Abstract

AbstractTolerance to zinc (Zn) deficiency was examined for three wheat (Triticum aestivum L.) and three barley (Hordeum vulgare L.) varieties grown in chelator‐buffered nutrient solution. Four indices were chosen to characterize tolerance to Zn deficiency: (1) relative shoot weight at low compared to high Zn supply (“Zn efficiency index”), (2) relative shoot to root ratio at low compared to high Zn supply, (3) total shoot uptake of Zn under deficient conditions, and (4) shoot dry weight under deficient conditions. Barley and wheat exhibited different tolerance to Zn deficiency, with barley being consistently more tolerant than wheat as assessed by all four indices. The tolerance to Zn deficiency in the barley varieties was in the order Thule=Tyra>Kinnan, and that of wheat in the order Bastian=Avle>Vinjett. The less tolerant varieties of both species accumulated more P in the shoots than the more tolerant varieties. For all varieties, the concentrations of Mn, Fe, Cu, and P in shoot tissue were negatively correlated with Zn supply. This antagonism was more pronounced for Mn and P than for Cu and Fe. Accumulation of Cu in barley roots was extremely high under Zn‐deficient conditions, an effect not so clearly indicated in wheat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.