Abstract
Uniform line spacing plane gratings are introduced into a recording system to generate aspherical wavefronts for recording varied line spacing plane holographic gratings. Analytical expressions of groove parameters are derived to the fourth order. A ray-tracing validation algorithm is provided based on Fermat's principle and a local search method. The recording parameters are optimized to record a varied line spacing plane holographic grating with the aid of derived analytical expressions. A design example demonstrates the exactness of the analytical expressions and the superiority of recording optics with auxiliary gratings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.