Abstract

Varicella-zoster virus (VZV) is ultimately dependent upon its host cell for replication. To ensure its reproduction, VZV reorganizes various cellular functions by taking advantage of pre-existing signalling pathways. Recently, it was demonstrated that the activation of stress-related mitogen-activated protein kinase pathways following infection led to increased phosphorylation of cellular transcription factors involved in VZV gene expression. Here, it was shown that members of the extracellular signal-regulated kinase (ERK) pathway are also influenced following VZV infection: c-Raf remained inactive in infected MeWo cells, whereas MEK1/2 and ERK1/2 were phosphorylated transiently, reaching their highest level of phosphorylation at between 10 and 12 h post-infection. Inhibition of this pathway resulted in a severe reduction in viral progeny and in an increased apoptotic response, indicating that the functionality of this cascade is essential for successful high-rate replication. In addition, the activities of Bad, a cytoplasmic target of ERK via ribosomal S6 kinase, and the nuclear-localized target c-Myc were analysed. Bad is a member of the Bcl-2 family and has a key function in regulating apoptosis. Pro-apoptotic functions of Bad are repressed by phosphorylation. A 10-fold increase in Bad phosphorylation at Ser-112 was detected following infection, which was suppressed after inhibition of ERK. The transcription factor c-Myc is involved in the regulation of cell growth and apoptosis. By performing immunoblots and quantitative RT-PCR, suppression of c-Myc expression was demonstrated at both the transcriptional and translational levels in VZV-infected cells. These results suggest that VZV optimizes the conditions for its replication in different ways: upregulation of proviral-acting systems and suppression of potentially antiviral-acting systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call