Abstract

BackgroundVaricella zoster virus (VZV) is a ubiquitous alphaherpesvirus that produces varicella and zoster. VZV can infect multiple cell types in the spinal cord and brain, including astrocytes, producing myelopathy and encephalopathy. While studies of VZV-astrocyte interactions are sparse, a recent report showed that quiescent primary human spinal cord astrocytes (qHA-sps) did not appear activated morphologically during VZV infection. Since astrocytes play a critical role in host defenses during viral infections of the central nervous system, we examined the cytokine responses of qHA-sps and quiescent primary human hippocampal astrocytes (qHA-hps) to VZV infection in vitro, as well as the ability of conditioned supernatant to recruit immune cells.MethodsAt 3 days post-infection, mock- and VZV-infected qHA-sps and qHA-hps were examined for morphological changes by immunofluorescence antibody assay using antibodies directed against glial fibrillary acidic protein and VZV. Conditioned supernatants were analyzed for proinflammatory cytokines [interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-gamma, and tumor necrosis factor-α] using the Meso Scale Discovery multiplex ELISA platform. Finally, the ability of conditioned supernatants to attract peripheral blood mononuclear cells (PBMCs) was determined using a chemotaxis assay. Quiescent primary human perineurial cells (qHPNCs) served as a control for VZV-induced cytokine production and PBMC migration. To confirm that the astrocytes have the ability to increase cytokine secretion, qHA-sps and qHA-hps were treated with IL-1β and examined for morphological changes and IL-6 secretion.ResultsVZV-infected qHA-sps displayed extensive cellular processes, whereas VZV-infected qHA-hps became swollen and clustered together. Astrocytes had the capacity to secrete IL-6 in response to IL-1β. Compared to mock-infected cells, VZV-infected qHA-sps showed significantly reduced secretion of IL-2, IL-4, IL-6, IL-12p70, and IL-13, while VZV-infected qHA-hps showed significantly reduced IL-8 secretion. In contrast, levels of all 10 cytokines examined were significantly increased in VZV-infected qHPNCs. Consistent with these results, conditioned supernatant from VZV-infected qHPNCs, but not that from VZV-infected qHA-sps and qHA-hps, recruited PBMCs.ConclusionsVZV-infected qHA-sps and qHA-hps have distinct morphological alterations and patterns of proinflammatory cytokine suppression that could contribute to ineffective viral clearance in VZV myelopathy and encephalopathy, respectively.

Highlights

  • Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that produces varicella and zoster

  • The interactions of VZV with spinal cord and cortical astrocytes play an important role in the pathogenesis of VZV myelopathy and encephalopathy, respectively, since astrocytes have essential functions related to the maintenance of neural circuits including ion homeostasis, neurotransmitter clearance, synapse formation/removal, and neurovascular coupling; astrocyte dysfunction is involved in numerous central nervous system (CNS) disorders [6, 7]

  • Morphological changes differ in VZV-infected primary human spinal cord astrocytes compared to VZV-infected hippocampal astrocytes glial fibrillary acidic protein (GFAP) was expressed in all DAPI-positive cells in mock-infected quiescent primary human spinal cord astrocytes (qHA-sps) cultures (1208 counted) and in 99% of cells in quiescent primary human hippocampal astrocytes (qHA-hps) (953 counted) cultures, indicating predominantly pure astrocyte cultures (Fig. 1a, e, respectively, green); in addition, qHA-sps were larger than qHA-hps (Fig. 1a, e, respectively)

Read more

Summary

Introduction

Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that produces varicella and zoster. Since astrocytes play a critical role in host defenses during viral infections of the central nervous system, we examined the cytokine responses of qHA-sps and quiescent primary human hippocampal astrocytes (qHA-hps) to VZV infection in vitro, as well as the ability of conditioned supernatant to recruit immune cells. VZV can spread centrally and produce VZV myelopathy and encephalopathy, with or without the associated zoster rash The course of these two diseases can be severe and protracted, with persistent virus infection and recurrences [5]. The interactions of VZV with spinal cord and cortical astrocytes play an important role in the pathogenesis of VZV myelopathy and encephalopathy, respectively, since astrocytes have essential functions related to the maintenance of neural circuits including ion homeostasis, neurotransmitter clearance, synapse formation/removal, and neurovascular coupling; astrocyte dysfunction is involved in numerous CNS disorders [6, 7]. Astrocytes play a critical role in host defenses during viral infections

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call