Abstract

When constructing a histogram, it is common to make all bars the same width. One could also choose to make them all have the same area. These two options have complementary strengths and weaknesses; the equal-width histogram oversmooths in regions of high density, and is poor at identifying sharp peaks; the equal-area histogram oversmooths in regions of low density, and so does not identify outliers. We describe a compromise approach which avoids both of these defects. We regard the histogram as an exploratory device, rather than as an estimate of a density. We argue that relying on the asymptotics of integrated mean squared error leads to inappropriate recommendations for choosing bin-widths.Datasets and R codes are available in the online supplements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.