Abstract
Over the past decade, the celebrated sparse representation model has achieved impressive results in various signal and image processing tasks. A convolutional version of this model, termed convolutional sparse coding (CSC), has been recently reintroduced and extensively studied. CSC brings a natural remedy to the limitation of typical sparse enforcing approaches of handling global and high-dimensional signals by local, patch-based, processing. While the classic field of sparse representations has been able to cater for the diverse challenges of different signal processing tasks by considering a wide range of problem formulations, almost all available algorithms that deploy the CSC model consider the same $\ell _1 - \ell _2$ problem form. As we argue in this paper, this CSC pursuit formulation is also too restrictive as it fails to explicitly exploit some local characteristics of the signal. This work expands the range of formulations for the CSC model by proposing two convex alternatives that merge global norms with local penalties and constraints. The main contribution of this work is the derivation of efficient and provably converging algorithms to solve these new sparse coding formulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.