Abstract
Search engine technology builds on theoretical and empirical research results in the area of information retrieval (IR). This dissertation makes a contribution to the field of language modeling (LM) for IR, which views both queries and documents as instances of a unigram language model and defines the matching function between a query and each document as the probability that the query terms are generated by the document language model. The work described is concerned with three research issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.