Abstract

This paper reviews some recent observations of gravity wave characteristics in the middle atmosphere, revealed by co-ordinated observations with the MU radar in Shigaraki (35°N, 136°E) and nearby rocketsonde experiments at Uchinoura (31°N, 131°E). We further summarize the results of comparative studies on the latitudinal variations of the gravity wave activity, which were detected by additionally employing data obtained with MF radars at Adelaide (35°S, 139°E) and Saskatoon (52, 107W) and lidar observations at Haute Provence (44, 6E). The seasonal variation of gravity wave activity detected with the MU radar in the lower stratosphere showed a clear annual variation with a maximum in winter, and coincided with that for the jet-stream intensity, indicating a close relation between the excitation of gravity waves and jet-stream activity at middle latitudes. The long-period (2–21 h) gravity waves seemed to be excited near the ground, presumably due to the interaction of flow with topography, and the short-period (5 min 2 h) components had the largest kinetic energy around the peak of jet-stream. We found an increase with height in the vertical scales of dominant gravity waves, which can be explained in terms of a saturation of upward propagating gravity waves. The values of the horizontal wind velocity variance generally increased in the stratosphere and lower mesosphere, but they became fairly constant above about 65 km due to the wave saturation, resulting in the active production of turbulent layers. Although the gravity wave energy showed an annual variation in the lower atmosphere, it exhibited a semiannual variation in the mesosphere, with a large peak in summer and a minor enhancement in winter. Lidar observations reasonably interpolated the seasonal variations in the intermediate height regions. The gravity wave energy in the mesosphere, with periods less than about 2 h, was consistently larger in summer than in winter at all the stations, i.e. at 35N, 44N,52 N and 35 S. However, the values were generally larger at 35 N than at 52 N. which was found from a comparison of l-yr observations at Shigaraki and Saskatoon. Furthermore, a comparison between Shigaraki and Adelaide, located at the conjugate points relative to the equator, revealed that the gravity-wave energy in the mesosphere was found to be fairly similar, when we compared the values in summer/winter in each hemisphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call