Abstract

Abstract. In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils were formed after deglaciation. The climate in the uppermost valley areas is sub-arctic oceanic, and the lithology consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. The Little Ice Age glacier advance affected parts of the valleys with the maximum glacier extent around AD 1750. In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. The sampled soils on the colluviums outside the LIA glacier limit became ice-free during the Preboral. The Regosols present better-developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Significantly lower mass activities of FRNs were found in soils on the moraines than on colluviums. Variations of ERN activities in the valleys were related to characteristics of soil mineralogical composition. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbex activities differs in the soils related to the LIA glacier limits in the drainage basins.

Highlights

  • Glacial retreat in the cold regions of Northern Europe is a general trend that has intensified over the last decades

  • In this study five sites on moraine and colluvium materials were selected to examine main soil properties, grain size distribution, soil organic carbon and pH to assess if soil profile characteristics and patterns of fallout radionuclides (FRNs) and environmental radionuclides (ERNs) are affected by different stages of ice retreat

  • The higher horizon differentiation in the more evolved Regosols developed on colluvium, in comparison to the Leptosols on the moraines, determine the larger variability in the elemental composition down the Regosol profiles

Read more

Summary

Introduction

Glacial retreat in the cold regions of Northern Europe is a general trend that has intensified over the last decades. The retreat of ice from glaciated valleys (Mavlyudov et al, 2012) causes important changes in geomorphic processes of glacial erosion, and has an impact on the hydrological resources by changing runoff and associated sediment transport as well as on the formation of soils on the newly exposed surfaces. The Little Ice Age (LIA) glacier advance affected parts of the Norwegian valleys (Bickerton and Matthews, 1993; Laute and Beylich, 2012, 2013). Amongst the main glacial deposits colluviums and moraines are surface formations resulting from the evolution of slopes and the ice retreat. Moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA) with the maximum glacier extent around AD 1750

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call