Abstract

Erythromycin mycelial dreg (EMD) resulting from erythromycin (ERY) production process may be used as a nutrient resource. However, it has a high moisture content, which makes handling operations complicated. In this study, the EMD dewaterability under heat-activated persulfate (PS) oxidation conditioning was investigated. The variations of physical and chemical properties of EMD were further investigated to uncover the underlying mechanism of EMD dewaterability. Results indicated that EMD dewaterability was worse under single heat process, but significantly improved under heat-activated PS oxidation process. Heat-activated PS oxidation conditioning was capable to increase zeta potential, reduce median particle size, alter EMD flocs morphology, and disrupt mycelial cells. Concurrently, heat-activated PS oxidation conditioning resulted in the decrease of protein in tightly bound (TB) extracellular polymeric substances (EPS) and total EPS, and the decrease of fluorescing constituents (tryptophan protein, tyrosine protein and tryptophan amino acid) in EPS. Furthermore, a possible mechanism was proposed for heat-activated PS oxidation conditioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call