Abstract

We investigated the dependence of absolute SnS band-edge energies on surface orientation using density functional theory and GW method for all surfaces with Miller indices −3≤h,k,l≤3 and found variations as large as 0.9 eV as a function of (hkl). Variations of this magnitude may affect significantly the performance of photovoltaic devices based on polycrystalline SnS thin-films and, in particular, may contribute to the relatively low measured open circuit voltage of SnS solar cells. X-ray diffraction measurements confirm that our thermally evaporated SnS films exhibit a wide distribution of different grain orientations, and the results of Kelvin force microscopy support the theoretically predicted variations of the absolute band-edge energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.