Abstract
In this investigation, raw water (RW), settled water (SW), and filtered water (FW) collected from a drinking water treatment plant were fractionated into 24 natural organic matter (NOM) fractions with varying molecular weights and hydrophobicity. The yields of disinfection byproducts (DBPs) obtained during the chlorination of the NOM fractions were explored. Results revealed that the 0–1 kDa, 5–10 kDa, and hydrophobic DBP precursors dominated RW. Hydrophobic fractions cannot be effectively removed, which contributed to the high DBP precursors remaining in the FW. The optional optical parameters, including UVA (UV340, UV360, and UV380), UVB (UV280, UV300, and UV310), and UVC (UV254, UV260, and UV272), were analyzed to determine the DBP yields during chlorination of different NOM fractions. Results revealed that UVC could be applied to indicate the regulated DBP yields of the humified precursors. Contrary to the generally accepted view, for biologically derived precursors, their regulated DBPs and dichloroacetonitrile correlated better with UVA (e.g. UV340). Moreover, PARAFAC analysis was applied to decompose an array of 24 EEM spectra. Good linear correlations were found between the PARAFAC components and most DBP yields. Furthermore, four fluorescence parameters were proposed via a modified fluorescence picking method, which can serve as excellent surrogates of PARAFAC components. These fluorescence parameters were found to be effective in indicating most DBP yields. Finally, the fluorescence intensity at excitation wavelength/emission wavelength = 310/416 nm was found to be a promising built-in parameter for the real-time monitoring of DBP precursors, regardless of the humification degree of the precursors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.