Abstract

In his 1973 paper, Jech extended the notion of cub and stationary sets to such sets in P ΞΊ Ξ» {\mathcal {P}_\kappa }\lambda and showed that many of their properties are preserved. We study variations of cub filters in this paper. We make use of the partition property (a large cardinal hypothesis) to investigate the properties of these filters. In the last section we investigate the relation of our filter to supercompact filters on P β„΅ 1 Ξ» {\mathcal {P}_{{\aleph _1}}}\lambda under the Axiom of Determinacy. This motivates the formulation of a certain infinitary partition property, and this property implies the Ξ» \lambda -supercompactness of β„΅ 1 {\aleph _1} .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.