Abstract

Monolayer molybdenum disulfide (MoS2) is considered an alternative two-dimensional material for high performance ultra-thin field-effect transistors. MoS2 is a triple atomic layer with a direct 1.8 eV bandgap. Bulk MoS2 has an additional indirect bandgap of 1.2 eV, which leads to high current on/off ratio around 108. Flakes of MoS2 can be obtained by mechanical exfoliation or grown by chemical vapor deposition. Intrinsic cut-off frequency of multilayer MoS2 transistor has reached 42 GHz. Chemical doping of MoS2 is challenging and results in reduction of contact resistance. This paper focuses on modeling of dual-gated monolayer MoS2 transistors with effective mobility of carriers varying from 0.6 cm2/V s to 750 cm2/V s. In agreement with experimental data, the model demonstrates that in back-gate bias devices, the contact resistance decreases almost exponentially with increasing gate bias, whereas in top-gate bias devices, the contact resistance stays invariant when varying gate bias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call