Abstract
Elastic-plastic finite element analyses of surface-cracked plates are performed using the commercial finite element code ANSYS. Various crack geometries are analyzed under tension and bending loads. A constraint factor dependent on the location along the perimeter of the surface crack, similar to the global constraint factor defined by Newman, is presented. This newly defined constraint factor is the averaged normal stress to flow stress ratio acting on a line originating on and perpendicular to the crack front at a prescribed location and terminating at the perimeter of the plastic zone on the crack plane. The plastic zone shape and size around the three-dimensional crack front determined from the finite element analyses are also presented. The analyses indicate that the maximum plastic zone size occurs beneath the free surface (2° < ϕ < 5°). Geometry and applied loading parameters are considered in equations relating them to constraint along the crack front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.