Abstract

Grasslands play a critical role in the global storage of atmospheric carbon (C). Precise estimation of C contents in different plant components is essential to formulate a strategy for mitigating the atmospheric C. Biomass (B) and C of different herbaceous plant components at species, functional group and site levels from tropical grassland locating on the campus of Banaras Hindu University, Varanasi, India were estimated. For this; 117 herbaceous species just-before flowering were harvested. B and C contents for each species and component were measured and statistically analyzed. The measured C (g plant-1) across the components varied from 0.08 to 31.12. On gm-2 basis; it varied between 29 (leaf) and 49 (root). Plant components, species and functional groups in isolation caused significant differences in the measured C. In the present study; the C content of stem was greater than the leaf and root. The perennial, erect, leguminous and native traits had greater C than the others. Therefore, this observation revealed that the perennial, erect, leguminous and native plants could be a better option for reducing the atmospheric CO2 by capturing it and then converting into B through photosynthesis. Further, the fitted regression equation between the root and shoot for B and C could be used for the extrapolation of B and C of the root component based on the shoot component. The conservative field measurement methods may give precise data on B and C but are destructive to grassland, difficult, time-consuming, and costly to cover at large scale. Hence, the present work could be substantial for the estimation of root C based on shoot component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call