Abstract
Temporal and vertical variations in uranium (U) concentrations and U isotope (δ238U, ‰) signatures were examined in sediment cores collected seven times over a one year period, from two lakes in Ontario, Canada, which are contaminated with U by historical mining activities. Bow Lake is holomictic, experiencing seasonal anoxia, while the sediments of meromictic Bentley Lake are permanently anoxic. Average annual peak concentrations of U in Bow Lake subsurface sediments were approximately 300 μg L−1 and 600 μg g−1 in porewater and bulk sediments, respectively. Similar ranges of concentrations (900 μg L−1 and 600 μg g−1, respectively) were observed in Bentley Lake sediments. The exceedingly high levels of U observed in the porewaters of both lakes, as well as the seasonal variability in U levels, challenge the traditional paradigm regarding U chemistry, i.e., that reduced U(IV) should be insoluble under anoxic conditions.The average annual δ238U ‰ values at the sediment-water interface of both lakes were similar (i.e., 0.47 ± 0.09‰ and 0.50 ± 0.16‰, relative to IRMM-184). The deep sediments in both Bentley Lake and Bow Lake record U isotope composition with a typical fractionation of 0.6‰ relative to the surface water, confirming authigenic U accumulation, i.e., negligible contribution of particulate material from the tailings. Also, the δ238U values in porewater have an average offset of ca. −0.1‰ relative to bulk sediments in anoxic zones and are reversed in the oxic sediment layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.