Abstract

It has been established that the addition of sodium dodecylsulfate (SDS) to water to a concentration of 1 mM increased the integrated sonoluminescence (SL) intensity to a maximum. Moreover, further increase in the SDS concentration to 10 mM decreased the SL intensity to a level comparable to that obtained for water. Photographic images of water and 10 mM SDS have revealed a localized distribution of SL bubbles near the liquid surface. For 1 mM SDS, a homogeneous distribution of SL bubbles was observed throughout the liquid. In this study, a comprehensive investigation was performed to determine the variations in the spatial distribution of SL bubbles as a function of SDS concentration, with and without the addition of sodium chloride (NaCl). It was found that the integrated SL intensity passed through a local minimum as the distribution of SL bubbles transformed from an isolated to a homogeneous distribution at 0.25 and 2.4 mM SDS. Similar transformations in the spatial distribution of SL bubbles within these SDS solutions were also observed upon the addition of a few millimolar NaCl. These variations in the spatial distribution of SL bubbles in aqueous solutions containing an ionic surfactant and electrolyte were believed to be the result of changes in the coalescence stability of bubbles, the attenuation of the acoustic wave, and the standing wave ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call