Abstract

The voluminous loess-Red Clay deposits in northern China forming part of the Chinese Loess Plateau (CLP) are valuable terrestrial archives of climatic evolution for the late Cenozoic Era. Fundamental in reconstructing the late Miocene and Pliocene wind patterns and aridification history is a detailed knowledge of the provenance of these deposits. This paper provides end member modelling of bulk grain-size distributions and U–Pb dating of detrital zircons for three distant Red Clay sequences in the northeastern (Baode), southern (Lantian) and western (Dongwan) CLP. Data show that these different sections each display a distinctive compositional structure indicating variable depositional processes, but they also share two significant zircon age populations of 200–300 Ma and 400–500 Ma. While the Permian–Triassic (200–300 Ma) group accounts for a larger proportion of zircons' ages in the northeastern (NE) CLP, the Ordovician–Silurian (400–500 Ma) component is dominant in the southern and western CLP. It is suggested that the Red Clay in the southern and western CLP was mainly derived from the Northern Tibetan Plateau (NTP) and the Taklimakan desert by low-level westerly winds. Samples of the NE CLP show an increased signature of sediments transported by near-surface northwesterly winds from the broad area of the Central Asian Orogen Belt (CAOB). This spatial transport and deposition pattern is supported by the results from the backtrace trajectory modelling of the dominant dust transport pathways in the CLP. It is noted that the Red Clay sample of around 3.6 Ma obtained from the NE CLP shows increased detrital contributions from its west, possibly indicating an intensified westerly wind strength and/or aridity of the NTP and Taklimakan desert due to the uplift of the Tibetan Plateau and Tianshan Mountains in the Pliocene. The onset of enhanced drainage of the Yellow River caused by the increased denudation of the NETP since 3.6 Ma could also have contributed to this.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call