Abstract

CdS films with a wide range of substrate temperatures as deposition parameters were fabricated on Corning Eagle 2000 glass substrates using RF magnetron sputtering. The crystallographic structure, microscopic surface texture, and stoichiometric and optical properties of each CdS film deposited at various substrate temperatures were observed to be highly temperature-dependent. The grown CdS thin films revealed a polycrystalline structure in which a cubic phase was mixed based on a hexagonal wurtzite phase. The relative intensity of the H(002)/C(111) peak, which represents the direction of the preferential growth plane, enhanced as the temperatures climbed from 25 °C to 350 °C. On the contrary, the intensity of the main growth peak at the higher temperatures of 450 °C and 500 °C was significantly reduced and exhibited amorphous-like behavior. The sharp absorption edge revealed in the transmission spectrum shifted from the long wavelength to the short wavelength region with the rise in the substrate temperature. The bandgap showed a tendency to widen from 2.38 eV to 2.97 eV when the temperatures increased from 25 °C to 350 °C. The CdS films grown at the temperatures of 450 °C and 500 °C exhibited glass-like transmittance with almost no interference fringes of light, which resulted in wide bandgap values of 3.09 eV and 4.19 eV, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.