Abstract
Lower-field myopia has been described for various vertebrates as an adaptation that permits the animal to keep the ground in focus during foraging, and, at the same time, to look out for distant objects, such as predators, in the upper visual field. Off-axis measurements with infrared photoretinoscopy in the eye of Geoemyda spengleri revealed a constant refractive state in the horizontal plane of the visual field but variable refraction in the vertical plane. In the three turtles investigated, the refractions increased continuously from the ventral to the dorsal visual field over a range of 35, 40 and 56 D, respectively. While this finding confirms the presence of an adaptive change of the refractive state equivalent to lower field myopia, subsequent measurements with a rotated retinoscope showed that at least part of the variation in the ventral field was attributed to astigmatism. The reason for this astigmatism is unknown. Anatomical investigation of the retina revealed that the constant refractive values in the horizontal plane corresponded to a stripe of increased ganglion cell density. A maximum density of 4,200 ganglion cells mm(-2) was counted in the centre of this visual streak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.