Abstract

To investigate the role of gonadal steroids in the hypothalamic-pituitary-adrenal (HPA) response to stress, we studied adrenocorticotrophin (ACTH) and corticosterone (B) responses to 20-min restraint stress in cycling female rats, and in ovariectomized (OVX) rats replaced with physiological levels of estradiol (E2) and progesterone (P). In cycling rats, we found significantly higher peak ACTH (P less than 0.01) and B (P less than 0.05) responses to stress during proestrus compared to the estrous and diestrous phases. No differences were found in either basal ACTH and B levels across the cycle phases. In a separate study, OVX rats were maintained on low, physiological levels of E2 and P with silastic implants for 3 days, and injected either with oil (O'), 10 micrograms of E2 (E') 24 h before stress testing, or with E2 and 500 micrograms P 24 and 4 h, respectively, prior to stress (EP'). These treatments mimicked endogenous profiles of E2 and P occurring during diestrous, proestrous, and late proestrous-early estrous phases, respectively. In response to stress, ACTH levels were higher (P less than 0.01) in the E' group compared to the EP' and O' groups. Although the peak B response was similar in all groups, the E' and EP' groups secreted more B after the termination of stress than did the O' group. Within the 20 min stress period, ACTH levels in the E' group were significantly (P less than 0.05) higher at 5, 10, and 15 min after the onset of stress, compared to the EP' and O' groups. Plasma B levels were significantly higher in the E' group at 5 and 10 min (P less than 0.05 and P less than 0.01, respectively) compared to the EP' and O' group. beta-endorphin-like immunoreactive responses to restraint stress were also significantly higher in the E' group compared to the EP' (P less than 0.05) and O' (P less than 0.01) groups. In contrast to the effect seen at 24 h, ACTH responses to stress 48 h after E2 injection in the E' group were comparable to O' animals. There was no effect of E2 on ACTH clearance, whereas B clearance was enhanced in E' treated animals vs. O'-treated animals. These results indicate that the HPA axis in the female rat is most sensitive to stress during proestrous. Such enhanced HPA responses to stress are limited to the early portion of proestrous, as progesterone appears to inhibit the facilitatory effects of estrogen on ACTH release during stress. Taken together, these results suggest an ovarian influence on both activational and inhibitory components of HPA activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.