Abstract

It is well-known that the efficiency of mixed integer linear mathematical programming depends on the model (formulation) used. With the same mathematical programming solver, a given problem can be solved in a brief calculation time using one model but requires a long calculation time using another. In this paper a new, unexpected feature to be taken into account is presented: the order of the constraints in the model can change the calculation time of the solver considerably. For a test problem, the Response Time Variability Problem (RTVP), it is shown that the ILOG CPLEX 9.0 optimizer returns a ratio of 17.47 between the maximum and the minimum calculations time necessary to solve optimally 20 instances of the RTVP, according to the order of the constraints in the model. It is shown that the efficiency of the mixed integer linear mathematical programming depends not only on the model (formulation) used, but also on how the information is introduced into the solver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.