Abstract

A technique for converting gamma‐ray count rates measured by the Gamma‐Ray Spectrometer on the MESSENGER spacecraft to spatially resolved maps of the gamma‐ray emission from the surface of Mercury is utilized to map the surface distributions of the elements Si, O, and K over the planet's northern hemisphere. Conversion of the K gamma‐ray count rates to elemental abundances on the surface reveals variations from 300 to 2400 ppm. A comparison of these abundances with models for the maximum surface temperature suggests the possibility that a temperature‐related process is controlling the K abundances on the surface as well as providing K to the exosphere. The abundances of K and Th have been determined for several geologically distinct regions, including Mercury's northern smooth plains and the plains interior to the Caloris basin. The lack of a significant variation in the measured Th abundances suggests that there may be considerable variability in the K/Th abundance ratio over the mapped regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call