Abstract

The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters (DPFs). This work focused on the changes in the surface functional groups, carbon chemical state, and graphitization degree during thermal treatment in an inert gas environment at intermediate temperatures of 600°C, 800°C, and 1000°C and explore the chemical species that were desorbed from the diesel soot surface during thermal treatment using a thermogravimetric analyser coupled with a gas-chromatograph mass spectrometer (TGA-GC/MS). The surface functional groups and carbon chemical state were characterized using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The graphitization degree was evaluated by means of Raman spectroscopy (RS). The concentrations of aliphatic C–H, C–OH, C=O, and O–C=O groups are reduced for diesel soot and carbon black when increasing the thermal treatment temperature, while the sp2/sp3 hybridized ratio and graphitization degree enhance. These results provide comprehensive evidence of the decreased reactivity of soot samples. Among oxygenated functional groups, the percentage reduction during thermal treatment is the largest for the O–C=O groups owing to its worst thermodynamic stability. TGA-GC/MS results show that the aliphatic and aromatic chains and oxygenated species would be desorbed from the soot surface during 1000°C thermal treatment of diesel soot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call