Abstract

To date, research regarding the changes of the sulfur and nitrogen rates in Wuhan during the summer is limited. In this study, we analyzed the air quality in Wuhan, China, using water-soluble ion, gaseous precursor, and weather data. A Spearman correlation analysis was then performed to investigate the temporal changes in air quality characteristics and their driving factors to provide a reference for air pollution control in Wuhan. The results indicate that SO2 in the atmosphere at Wuhan undergoes secondary conversion and photo-oxidation, and the conversion degree of SO2 is higher than that of NO2. During the summers of 2016 and 2017, secondary inorganic atmospheric pollution was more severe than during other years. The fewest oxidation days occurred in summer 2020 (11 days), followed by the summers of 2017 and 2014 (25 and 27 days, respectively). During the study period, ion neutralization was the strongest in summer 2015 and the weakest in August 2020. The aerosols in Wuhan were mostly acidic and NH4+ was an important neutralizing component. The neutralization factors of all cations showed little change in 2015. K+, Mg2+, and Ca2+ level changes were the highest in 2017 and 2020. At low temperature, high humidity, and low wind speed conditions, SO2 and NO2 were more easily converted into SO42− and NO3−.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call