Abstract

Abstract We documented regional and local variations in basement relief, sediment thickness, and sediment type in the Shikoku Basin, northern Philippine Sea Plate, which is subducting at the Nankai Trough. Seismic reflection data, tied with ocean drilling program drill cores, reveal that variations in the incoming sediment sequences are correlated with basement topography. We mapped the three‐dimensional seismic facies distribution and measured representative seismic sequences and units. Trench‐parallel seismic profiles show three regional provinces in the Shikoku Basin that are distinguished by the magnitude of basement relief and sediment thickness: Western (<200–400 m basement relief, >600 m sediment thickness), Central (>1500 m relief, ∼2000 m sediments), and Eastern (<600 m relief, ∼1200 m sediments) provinces. The total thickness of sediment in basement lows is as much as six times greater than that over basement highs. Turbidite sedimentation in the Shikoku Basin reflects basement control on deposition, leading to the local presence or absence of turbidite units deposited during the middle Oligocene to the middle Miocene. During the first phase of sedimentation, most basement lows were filled with turbidites, resulting in smooth seafloor morphology that does not reflect basement relief. A second phase of turbidite deposition in the Eastern Province was accompanied by significant amounts of hemipelagic sediments interbedded with turbidite layers compared to the other provinces because of its close proximity to the Izu–Bonin Island Arc. Both regional and local variations in basement topography and sediment thickness/type have caused lateral heterogeneities on the underthrusting plate that will, in turn, influence lateral fluid flow along the Nankai accretionary prism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call