Abstract

Root chemistry varies with tree species and root diameter but little information is available about Tibetan forest species. The root chemistry of three root diameter classes (fine: 0–2 mm, medium: 2–5 mm, coarse: 5–10 mm) of three subalpine species (Abies faxoniana Rehd. and Wild, Picea asperata Mast., and Betula albosinensis Burkill) were investigated. Carbon concentrations, and carbon/nitrogen and carbon/phosphorus ratios increased but nitrogen, phosphorus and nitrogen/phosphorus ratios decreased with increasing root diameter. The roots of the conifers had higher carbon levels, and higher carbon/nitrogen and carbon/phosphorus ratios than birch roots. The opposite was found with nitrogen and phosphorus levels and nitrogen/phosphorus ratios. Lignin concentrations decreased but cellulose concentrations increased with greater root diameters. The results indicate that diameter-associated variations in root chemistry may regulate their contribution to detrital pools which has important implications for below-ground carbon and nutrient cycles in these subalpine forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call