Abstract
The purpose of this article is to understand the effect of multi-temporal multi-angle data on vegetation community type mapping in desert regions. Based on data from the multi-angle imaging spectroradiometer (MISR), a set of 46 multi-temporal classification experiments were carried out in the Jornada Experimental Range in New Mexico, USA. Besides multi-angle observations, bidirectional reflectance distribution function (BRDF) model parameters were also used as input data for the classifications. The experiments used two widely accepted BRDF models, the Rahman–Pinty–Verstraete (RPV) model and the Ross-thin Li-sparse reciprocal (RTnLS) model. The experiments show that multi-temporal multi-angle classifications can yield a more accurate mapping than multi-temporal nadir classifications, and multi-temporal BRDF model parameters combined with a single nadir image can provide an accuracy roughly the same as all multi-temporal multi-angle observations for the vegetation mapping. These findings opened not only a path of reducing data dimensionality for multi-temporal multi-angle classifications, but also a way of merging products of both MISR and moderate resolution imaging spectroradiometer (MODIS) to improve semi-arid vegetation mapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.