Abstract

Agonist motor neurons usually alternate between activity and quiescence during normal rhythmic behavior; antagonist motor neurons are usually active during agonist motor neuron quiescence. During an antagonist deletion, a naturally occurring motor-pattern variation, there is no antagonist activity and no quiescence between successive bursts of agonist activity. Motor neuron recordings of normal fictive rostral scratching in the turtle displayed rhythmic alternation between activity and quiescence for hip flexors, knee flexors, and knee extensors. Knee-flexor activity occurred during knee-extensor quiescence. During a hip-extensor deletion, a variation of rostral scratching, rhythmic hip-flexor bursts occurred without intervening hip-flexor quiescence. There were 3 distinct patterns of knee motor activity during the cycle before or after a hip-extensor deletion. In most cycles, there was knee flexor-extensor rhythmic alternation. In some cycles, termed knee-flexor deletions, there was no knee-flexor activity and rhythmic knee-extensor bursts occurred without intervening knee-extensor quiescence. In other cycles, termed knee-extensor deletions, there was no knee-extensor activity and rhythmic knee-flexor bursts occurred without intervening knee-flexor quiescence. The concept of a module refers to a population of motor neurons and interneurons with similar activity patterns; interneurons in a module coordinate agonist and antagonist motor neuron activities, either with excitation of agonist motor neurons and interneurons, or with inhibition of antagonist motor neurons and interneurons. Previous studies of hip-extensor deletions support the concept of a rhythmogenic hip-flexor module. The knee-related deletions described here support the concept of rhythmogenic knee-flexor and knee-extensor modules linked by reciprocal inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.