Abstract

Mitochondrial DNA (mtDNA) plays a critical role in oocyte maturation, fertilization, and early embryonic development. Defects in mtDNA may determine the alteration of the mitochondrial function, affecting cellular oxidative phosphorylation and ATP supply, leading to impaired oocyte maturation, abnormal fertilization, and low embryonic developmental potential, ultimately leading to female infertility. This case-control study was established to investigate the correlation between mtDNA variations and early embryonic development defects. Peripheral blood was collected for next-generation sequencing from women who suffered the repeated failures of in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) cycles due to early embryonic development defects as well as in-house healthycontrols, and the sequencing results were statistically analyzed for all subjects. This study found that infertile women with early embryonic development defects carried more mtDNA variants, especially in the D-loop region, ATP6 gene, and CYTB gene. By univariate logistic regression analysis, 16 mtDNA variants were associated with an increased risk of early embryonic development defects (OR > 1, p < 0.05). Furthermore, we identified 16 potentially pathogenic mtDNA variants only in infertile cases. The data proved that mtDNA variations were associated with early embryonic development defects in infertile Chinese women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call