Abstract

The coexistence of genetically modified (GM) crops with conventional crops has become a subject of debate and inquiry. Maize (Zea mays L.) is one of the most cultivated crop plants in the world and there is a need to assess the risks of cross-pollination. Concentration and deposition rate downwind from different-sized maize crops were measured during three flowering seasons, together with micrometeorological conditions in the surrounding environment. Pollen release started once the air vapor pressure deficit (VPD) increases above 0.2 to 0.5 kPa. Moreover, the dynamics of release was correlated with the dynamics of VPD surrounding the tassels. Horizontal deposition appeared to follow a power law over short distance downwind from the source, and the dispersal distance increased with the source canopy height and the roughness length of the downwind canopy. This work also provides a data set containing both pollen measurements and contrasting weather conditions to validate dispersal models and further investigate maize pollen dispersal processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.