Abstract

Intraspecific leaf trait variations are becoming a topic of interest for many ecologists because individual-based traits are essentially the drivers of variations at the community level. Six coexisting major tree species in an old-growth temperate forest, Northeast China (i.e., Abies nephrolepis, Pinus koraiensis, Acer mono, Fraxinus mandshurica, Tilia amurensis, and Ulmus laciniata) were sampled, and three habitat types (i.e., Hab I: high soil organic carbon with a moderate slope; Hab II: low soil organic carbon with a gentle slope; and Hab III: low soil organic carbon with a strong slope) were used in the plot. We performed a two-way ANOVA to compare the specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf carbon content (LCC) between saplings (1 < DBH ≤ 5 cm) and adults (DBH ≥ 10 cm) and between habitat types within species. We simultaneously evaluated the effects of life stage, plant functional type, and habitat type on the six leaf traits. Our results showed that life stage and habitat type had varied influences on the leaf traits of the six species. Life stage was an important determinant for all leaf traits. Plant functional type was included in the best models for SLA, LNC, and LCC. Habitat type had a greater influence on LDMC than SLA. Meanwhile, habitat type had a greater influence on LNC and LPC than LCC. The correlation between leaf traits with local environmental factors varied across different plant functional types and life stages. We suggest conducting individual-based analyses of leaf trait variations according to plant functional type and life stage to understand the plant life strategies along an environmental gradient may improve understanding of the forest dynamics in an old-growth temperate forest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call