Abstract

Groundwater is a major source of supply for domestic and agricultural purposes, especially in arid and semi-arid regions. In this study, we followed the variations in water levels in the Souf oasis in the Algerian Sahara by measuring depths to groundwater across 65 points during the period from 2010 to 2015. Additionally, electrical conductivity (EC) was measured for assessing variations in groundwater salinity in the same groundwater monitoring network over the same time interval. The results from these investigations indicated that there are significant and continuous declines in the groundwater level across all study areas throughout the period of investigation. This is especially the case in the northern part of the study area where the water table declined by up to 18.2 m in Ghamra in 2015. Additionally, this study has indicated that the rate of decline of groundwater levels has increased from 0.29 m/year as an average in 2011 to 2.37 m/year in 2015, where the situation has become alarming. As a consequence of this, the depth to groundwater now exceeds 2 m over more than 77% of the study area, and only about 17% of the study area now has a water table depth that lies within the optimal depth interval for extractive uses (between 1 and 2 m). This decline in groundwater levels has been accompanied by a significant increase in the electrical conductivity values (salinity) of this water, and there is a strong correlation between these variables (R > 0.99). This alarming situation has been caused by the continuous over-exploitation and unsustainable management of this limited resource, especially by the agricultural sector. For a long time, this critical situation led to the demise of the agricultural world heritage cultivation system (Ghout) due to the increasing salinity of groundwater. Two solutions are proposed to manage the effects of groundwater depletion in the area: firstly, rationalizing groundwater use through effective groundwater allocation management measures, and secondly by implementing the reuse of treated wastewater as an alternative water source for agricultural use. This latter measure could be in two ways: either by direct use in irrigation to relieve pressure on the phreatic aquifer, or by artificial recharge of the phreatic aquifer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call