Abstract
To clarify the variations in environmental factors and biological characteristics of eutrophic, brackish, meromictic Lake Abashiri, Japan, we studied long-term variations in concentrations of chloride and nutrients in lake water and characteristics of their supply. This lake has an anoxic layer containing much chloride, nutrients, and sulfide. Although a dense Anabaena bloom appeared in the lake every summer before 1986, the bloom did not appear after upwelling from the bottom layer (a blue tide) occurred in spring 1987. A dense layer of photosynthetic bacteria (Chlorobium sp.) formed at the top of the anoxic layer from 1989 to May 1992. The concentrations of nutrients and chloride in the oxygenic layer were determined by the balance between nutrients from influent rivers, including dissolved inorganic nitrogen, and matter supplied from the anoxic layer, including chloride and dissolved inorganic phosphorus. These influences controlled the dominant phytoplankton species and their biomass. The appearance of an Anabaena bloom in Lake Abashiri is promoted by nitrogen limitation caused by decreased loading from influent rivers and/or by a stable supply of phosphorus from the anoxic layer (no formation of photosynthetic bacterial layer and small upwelling), but the appearance is inhibited by a high chloride ion concentration with large upwelling. The main reason for the formation of a photosynthetic bacterial layer from 1989 to May 1992 was that sunlight reached the top of the anoxic layer because of the increase in transparency due to inhibition of the Anabaena bloom with upwelling. The dense layer of photosynthetic bacteria blocked nutrient diffusion from the anoxic layer to the oxygenic layer by uptake, and decreased the biomass of phytoplankton in the oxygenic layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.