Abstract

Rice is one of mankind’s major food staples, and the erect panicle architecture in rice is an important morphological improvement. The dense and erect panicle 1 (DEP1) locus corresponds with the formation of erect panicles and has been widely used in rice breeding. However, the genetic diversity of DEP1 remains narrow. In order to improve the genetic diversity of DEP1, we used a rice germplasm collection of 72 high yielding japonica rice varieties to analyze the contribution of DEP1 to the panicle traits. We found 45 SNPs and 26 insertions and deletions (indels) within the DNA fragment of DEP1. We further detected 7 haplotypes and found that the replacement of 637 bp by a 12 bp fragment could explain the erect panicle architecture in all 72 germplasms. An SNP (G/C) at the -1253 bp of the promoter region caused a core sequence shift (TGGGCC) of a site II transcriptional regulatory element. The association analysis showed that the SNP(G/C) largely affects the number of primary and secondary branches, and grain number per panicle. Our results provide novel insights into the function and genetic diversity of DEP1. The SNP (G/C) at the promoter region will contribute to the flexible application of DEP1 in rice breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.