Abstract
A new approach was taken to investigate the crustal stucture of the Kane transform and its aseismic extension, using high quality bathymetry and gravity data. The gravity signatures associated with variations in crustal thickness of the transform were isolated from the observed free-air anomaly, was continued downward to the mean depth of the crust/mantle interface and converted onto the relief on that surface. The crustal thickness of the transform was then calculated by subtracting seawater depth from the depth of the gravity-inferred crust/mantle interface, 3-D gravity investigation results indicate that the Kane transform and adjacent areas are associated with a crust thinner than normal oceanic crust. The transform trough is largely underlain by a crust less than 4.5km thick and in the nodal basins the crust may be as thin as 3 km. The crust beneath the fracture zone valley is 4–5.5 km thick. The rift valleys on the spreading segments are also characterized by thin crust (4–5 km thick). Thin oceanic crust extends to 20–30 km from the transform axis except for some localized places such as the inside corner highs adjoining the ridge-transform intersections. These gravity-inferred results match fairly well with limited published seismic results. Thinning of the crust is mainly attributable to a thin layer 3, which in turn may be explained by the combined effects of reduced magma supply at the ends of the spreading segments and tectonic activities in the region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.