Abstract

Dead zooplankton, including crustaceans, are increasingly recognized as important agents of vertical carbon export from surface waters and in marine food webs. Quantifying the contribution of passively sinking copepods (PSCs) to vertical fluxes of total particulate organic carbon (POC) is important for understanding marine ecosystem carbon budgets. Information on this is limited because identifying PSCs in sediment trap samples is difficult. Generally, swimmers (undecomposed metazoans, including PSCs, caught in sediment traps) are removed from a trap sample before the POC content is measured, although ignoring PSCs causes the total POC flux to be significantly underestimated. We quantified temporal and regional variability in PSC flux and contribution of PSCs to total POC flux (PSCs + detrital sinking particles, generally analyzed to estimate detrital POC flux) at the Mackenzie Shelf margins in the Beaufort Sea. Six datasets were used to examine PSC flux variability at ~100 m depth, which is deeper than the winter pycnocline depth (30-50 m), at the continental margin. The average (±SD) annual PSC flux (1378 ± 662 mg C m-2 yr-1, n = 6 [datasets]) and PSC contribution to the total POC flux (21 ± 10%, n = 6) suggested that PSCs, especially Pareuchaeta glacialis, were important agents of POC export from the surface layer (~100 m) to deeper water at the inter-regional and multiyear scales. We propose a hypothesis that processes controlling PSC flux variability may vary seasonally, perhaps relating to life cycle (reproduction) in winter (February) and osmotic stress in July-October when the PSC flux is relatively high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call