Abstract

Chain collapse and the formation of a near-native tertiary structure are believed to be two key features controlling the progress of a protein folding transition. In this work, we study the interrelation between these two properties along computer-simulated relaxation trajectories of unfolded in vacuo lysozyme. Large-scale molecular shape transitions are monitored within a space defined by two discriminating descriptors of chain compactness and entanglement (or “topological”) complexity. For the system studied here, results indicate that successful refolding into native-like conformers requires a balance between polymer collapse and a topologically “correct” organization of chain loops. Although no single factor dominates the relaxation paths, compactization appears to be a necessary condition for near-native refolding. Whenever initial collapse is limited or absent, we find a “derailed” folding path with high configurational frustration. We also show that disulfide-reduced lysozyme unfolds differently, yet relaxes to the pattern of molecular shapes characteristic of the folded states of disulfide-intact lysozyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.