Abstract
Alkaline lakes are a special aquatic ecosystem that act as important water and alkali resource in the arid-semiarid regions. The primary aim of the study is to explore how environmental factors affect community diversity and structure, and to find whether there are key microbes that can indicate changes in environmental factors in alkaline lakes. Therefore, four sediment samples (S1, S2, S3, and S4) were collected from Hamatai Lake which is an important alkali resource in Ordos' desert plateau of Inner Mongolia. Samples were collected along the salinity and alkalinity gradients and bacterial community compositions were investigated by Illumina Miseq sequencing. The results revealed that the diversity and richness of bacterial community decreased with increasing alkalinity (pH) and salinity, and bacterial community structure was obviously different for the relatively light alkaline and hyposaline samples (LAHO; pH < 8.5; salinity < 20‰) and high alkaline and hypersaline samples (HAHR; pH > 8.5; salinity > 20‰). Firmicutes, Proteobacteria and Bacteriodetes were observed to be the dominant phyla. Furthermore, Acidobacteria, Actinobacteria, and low salt-tolerant alkaliphilic nitrifying taxa were mainly distributed in S1 with LAHO characteristic. Firmicutes, Clostridia, Gammaproteobacteria, salt-tolerant alkaliphilic denitrifying taxa, haloalkaliphilic sulfur cycling taxa were mainly distributed in S2, S3 and S4, and were well adapted to haloalkaline conditions. Correlation analysis revealed that the community diversity (operational taxonomic unit numbers and/or Shannon index) and richness (Chao1) were significantly positively correlated with ammonium nitrogen (r = 0.654, p < 0.05; r = 0.680, p < 0.05) and negatively correlated with pH (r = -0.924, p < 0.01; r = -0.800, p < 0.01; r = -0.933, p < 0.01) and salinity (r = -0.615, p < 0.05; r = -0.647, p < 0.05). A redundancy analysis and variation partitioning analysis revealed that pH (explanation degrees of 53.5%, pseudo-F = 11.5, p < 0.01), TOC/TN (24.8%, pseudo-F = 10.3, p < 0.05) and salinity (9.2%, pseudo-F = 9.5, p < 0.05) were the most significant factors that caused the variations in bacterial community structure. The results suggested that alkalinity, nutrient salt and salinity jointly affect bacterial diversity and community structure, in which one taxon (Acidobacteria), six taxa (Cyanobacteria, Nitrosomonadaceae, Nitrospira, Bacillus, Lactococcus and Halomonas) and five taxa (Desulfonatronobacter, Dethiobacter, Desulfurivibrio, Thioalkalivibrio and Halorhodospira) are related to carbon, nitrogen and sulfur cycles, respectively. Classes Clostridia and Gammaproteobacteria might indicate changes of saline-alkali conditions in the sediments of alkaline lakes in desert plateau.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.