Abstract
Antibiotic resistance genes (ARGs) have been widely detected in the environment. Anaerobic digestion (AD) has the potential ability to remove ARGs, and a comprehensive study is needed on the variations in ARGs during AD. In this study, variations in antibiotic resistance genes (ARGs) and microbial communities were investigated during the long-term operation of an upflow anaerobic sludge blanket (UASB) reactor. An antibiotic mixture of erythromycin, sulfamethoxazole and tetracycline was added to the UASB influent and the operation period was 360 days. The abundances of 11 ARGs and class 1 integron-integrase gene were detected in the UASB reactor, and the correlation between the ARGs and the microbial community was analyzed. The composition of ARGs indicated that the main ARGs in the effluent were sul1, sul2, and sul3, whereas the main ARG in the sludge was tetW. Correlation analysis indicated a negative correlation between microorganisms and ARGs in the UASB. In addition, most of ARGs showed a positive correlation with norank_f_Propionibacteriaceae and Clostridum_sensu_stricto_6, which were identified as potential hosts. These findings may help develop a feasible strategy for removing ARGs from aquatic environments during anaerobic digestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.