Abstract

In wetland ecosystems, little is known about the relationships between above- and below-ground plant biomass and water table, a primary driver of their distribution in these systems. These relationships can provide a means for estimating belowground stocks over large areas with variable biomass and predicting vascular plant responses to changing water tables resulting from climate change. We measured above- and below-ground vascular plant biomass across species and microtopography (i.e., hummocks and lawns) in a bog in eastern Ontario. We examined the relationships between above- and below-ground vascular plant biomass their variation with water table and species richness. We took 56 cores during a growing season, separating above- and below-ground biomass by species and plant part (small and coarse root, leaf, stem). Hummocks had greater above- and below-ground biomass, and significantly greater aboveground:belowground ratios than lawns. Lawns had a more even distribution of biomass across species than hummocks aboveground, indicating that only a few species (e.g., Vaccinium myrtilloides Michx. and Chamaedaphne calyculata Moench) are able to thrive in the driest bog conditions. Additionally, fewer species contributed to root biomass at depth, suggesting possible resource partitioning among species. Lower water tables lead to greater belowground biomass. Total above- to below-ground plant biomass relationships were strongest when separated by plant species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call