Abstract

ABSTRACTAnalysis of variations in water–soluble organic matter (WSOM) δ13C of leaves and phloem can efficiently describe the δ13C distributions within plants and identify the temporal variation of δ13C. In this study, WSOM δ13C values of both leaves and phloem (twig, stem, and root) of Platycladus orientalis were measured during seven sunny days, including 2–hour interval measurements at three days for diel pattern analysis and 6–hour interval measurements at the remaining four days for day–to–day variation analysis. Analysis of WSOM δ13C in different plant organs showed that 13C was generally depleted from leaves to twigs, then enriched in stems and subsequently depleted in roots. Stems were significantly 13C–enriched compared to twigs (p < 0.05), while δ13C differences between stems and other organs and among leaves, twigs and roots were not significant (p > 0.05). No clear diel patterns in δ13C of leaves and phloem were found. Daily average δ13C values indicated that all plant organs had more positive values on sunny days during the dry season than during the wet season. Both photosynthetic and post–photosynthetic fractionation influence variations in WSOM δ13C. These results have implications for research on plant physiology and plant water use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call