Abstract

Using the Planck far-infrared and Arecibo GALFA 21-cm line surveys, we identified a set of isolated interstellar clouds (approximately degree-sized on the sky and comprising 100 solar masses) and assessed the ratio of gas mass to dust mass. Significant variations of the gas-to-dust ratio are found both from cloud to cloud and within regions of individual clouds; within the clouds, the atomic gas per unit dust decreases by more than a factor of 3 compared to the standard gas-to-dust ratio. Three hypotheses are considered. First, the apparently low gas-to-dust ratio could be due to molecular gas. Comparing to Planck CO maps, the brightest clouds have a H2/CO ratio comparable to galactic plane clouds, but a strong lower limit is placed on the ratio for other clouds, such that the required amount of molecular gas is far higher than would be expected based on the CO upper limits. Second, we consider self-absorbed 21-cm lines and find the optical depth must be approximately 3, significantly higher than found from surveys of radio sources. Third, grain properties may change within the clouds: they become more emissive when they are colder, while not utilizing heavy elements that already have their cosmic abundance fully locked into grains. It is possible all three processes are active, and follow-up studies will be required to disentangle them and measure the true total gas and dust content of interstellar clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.