Abstract

Cotton is the world’s leading cash crop, and genetic improvement of fiber yield and quality is the primary objective of cotton breeding program. In this study, we used various approaches to identify QTLs related to fiber yield and quality. Firstly, we constructed a four-way cross (4WC) mapping population with four base core cultivars, Stoneville 2B, Foster 6, Deltapine 15 and Zhongmiansuo No.7 (CRI 7), as parents in Chinese cotton breeding history and identified 83 QTLs for 11 agronomic and fiber quality traits. Secondly, association mapping of agronomical and fiber quality traits was based on 121 simple sequence repeat (SSR) markers using a general linear model (GLM). For this, 81 Gossypium hirsutum L. accessions including the four core parents and their derived cultivars were grown in seven diverse environments. Using these approaches, we successfully identified 180 QTLs significantly associated with agronomic and fiber quality traits. Among them were 66 QTLs that were identified via linkage disequilibrium (LD) and 4WC family-based linkage (FBL) mapping and by previously published family-based linkage (FBL) mapping in modern Chinese cotton cultivars. Twenty eight and 44 consistent QTLs were identified by 4WC and LD mapping, and by FBL and LD mapping methods, respectively. Furthermore, transmission and variation of QTL-alleles mapped by LD association in the three breeding periods revealed that some could be detected in almost all Chinese cotton cultivars, suggesting their stable transmission and some identified only in the four base cultivars and not in the modern cultivars, suggesting they were missed in conventional breeding. These results will be useful to conduct genomics-assisted breeding effectively using these existing and novel QTL alleles to improve yield and fiber qualities in cotton.

Highlights

  • Cotton is the most important natural textile fiber source globally

  • The phenotypic allele effect was estimated through comparison between the average phenotypic value over accessions with the specific allele and that of all accessions: X

  • We successfully identified 180 quantitative trait loci (QTL) using

Read more

Summary

Introduction

Cotton is the most important natural textile fiber source globally. The worldwide economic impact of the cotton industry is estimated to approximately $500 billion per year with an annual utilization of approximately 115 million bales or 27 million metric tons of cotton fiber. (n = 26, AD genome), referred to as ‘Upland cotton’, accounts for 95% of the world’s cotton production Current and obsolete cultivars of Upland cotton have been the main sources of cotton breeding program worldwide. China is the largest cotton-growing nation, but is not an Upland cotton domestication country.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call