Abstract

Hybrid rocket motors have several attracting characteristics such as simplicity, low cost, safety, reliability, environmental friendliness. In particular, hybrid rockets can provide complex and flexible thrust profiles not possible with solid rockets in a simpler way than liquid rockets, controlling only a single fluid. Unfortunately, the drawback of this feature is that the mixture ratio cannot be directly controlled but depends on the specific regression rate law. Therefore, in the general case the mixture ratio changes with time and with throttling. Thrust could also change with time for a fixed oxidizer flow. Moreover, propellant residuals are generated by the mixture ratio shift if the throttling profile is not known in advance. The penalties incurred could be more or less significant depending on the mission profile and requirements. In this paper, some proposed ways to mitigate or eliminate these issues are recalled, quantitatively analysed and compared with the standard case. In particular, the addition of energetic additives to influence the regression rate law, the injection of oxidizer in the post-chamber and the altering-intensity swirling-oxidizer-flow injection are discussed. The first option exploits the pressure dependency of the fuel regression to mitigate the shift during throttling. The other two techniques can control both the mixture ratio and thrust, at least in a certain range, at the expense of an increase of the architecture complexity. Moreover, some other options like pulse width modulation or multi-chamber configuration are also presented. Finally, a review of the techniques to achieve high throttling ratios keeping motor stability and efficiency is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.