Abstract
Numerical atomic basis orbitals are variationally optimized for biological molecules such as proteins, polysaccharides, and deoxyribonucleic acid within a density functional theory. Based on a statistical treatment of results of a fully variational optimization of basis orbitals (full optimized basis orbitals) for 43 biological model molecules, simple sets of preoptimized basis orbitals classified under the local chemical environment (simple preoptimized basis orbitals) are constructed for hydrogen, carbon, nitrogen, oxygen, phosphorous, and sulfur atoms, each of which contains double valence plus polarization basis function. For a wide variety of molecules we show that the simple preoptimized orbitals provide well convergent energy and physical quantities comparable to those calculated by the full optimized orbitals, which demonstrates that the simple preoptimized orbitals possess substantial transferability for biological molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.