Abstract

In this paper, the distributed optimal control problem governed by unsteady diffusion–convection–reaction equation without control constraints is studied. Time discretization is performed by variational discretization using continuous and discontinuous Galerkin methods, while symmetric interior penalty Galerkin with upwinding is used for space discretization. We investigate the commutativity properties of the optimize-then-discretize and discretize-then-optimize approaches for the continuous and discontinuous Galerkin time discretization. A priori error estimates are derived for fully-discrete state, adjoint and control. The numerical results given for convection dominated problems via optimize-then-discretize approach confirm the theoretically observed convergence rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.