Abstract

Recently, interest of aerospace and automotive industries on medium-frequency vibrational behavior of composite shell structures has grown due to their high specific stiffness and fatigue resistance. Conventional methods such as the finite element method and the statistical energy analysis are not suitable for the medium-frequency bandwidth. Conversely, the variational theory of complex rays (VTCR) is taking place as an ad-hoc technique to tackle such frequency band. It is a Trefftz method based on a weak variational formulation. Equilibrium equations are met using exact solutions as shape functions. The variational problem imposes boundary conditions in weak form. The present paper extends VTCR to orthotropic shell structures. Moreover, several new enhancements are introduced. Now, we use a quasi-symmetric ray distribution which can greatly reduce computational costs, and addresses in-plane inertia which was neglected in previous works. Some relevant numerical examples are presented to show the strategy and results are compared with a FEM reference to study performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.