Abstract

The variational optimization of the energy with respect to the two-electron reduced-density matrix (2-RDM), constrained by N-representability conditions, can determine the shape of molecular potential energy surfaces with useful accuracy. In this paper, we apply the 2-RDM method with a first-order optimization algorithm [Mazziotti, D. A. Phys. Rev. Lett. 2004, 93, 213001] to investigating the potential energy surfaces of carbon monoxide in the presence and absence of an electric field. Two beneficial characteristics of the 2-RDM method for computing potential energy surfaces include the following: (i) its ability to capture multireference effects without specifying any reference wave function or density matrix and (ii) its guarantee of a global energy minimum in the variational optimization. The 2-RDM method produces electronic ground-state energies with similar accuracy at equilibrium and nonequilibrium geometries in both the presence and the absence of the electric field. Computed dipole moments are similar in accuracy to the values from the computationally expensive configuration interaction with single, double, triple, and quadruple excitations. These surfaces have important applications in quantum molecular control theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.